Chemistry Practice
 Placement Exam

Choose the best possible answer for each question. This is not the placement exam, but it gives you an idea of the kind of questions one can expect in the exam.

1. Expressed in μL, the volume $6.35 \times 10^{-4} L$ is:
a. 63.5
b. 6.35
c. 635 .
d. 0.635
e. 0.00635
2. Expressed in scientific notation, the number 1234567890 is:
a. $\quad 1.234567890 \times 10^{9}$
b. $1.234567890 \times 10^{8}$
c. $1.234567890 \times 10^{10}$
d. 1.23456789×10^{9}
e. 1.23456789×10^{8}
3. Expressed in mm^{3}, the volume $4.23 \times 10^{-9} \mathrm{~m}^{3}$ is:
a. 4.23
b. 42.3
c. 423 .
d. 0.423
e. 0.0423
4. If the density of a substance is $1.43 \mathrm{lb} / \mathrm{ft}^{3}$, the mass of $4.35 \mathrm{in}^{3}$ of the substance in grams is: $[1 \mathrm{ft}=12 \mathrm{in} ; 1 \mathrm{lb}=453.59 \mathrm{~g}]$
a. 235.13
b. 12.43
c. 23.70
d. 1.63
e. 1.25
5. Simplified, the expression $\left(8.9 \times 10^{5} \div 2.348 \times 10^{2}\right)+121$ is:
a. 3911.46
b. 3900
c. 3910
d. 3911
e. 3911.5
6. Rounded to four significant figures, the number 0.009650901 becomes:
a. 0.009650
b. 0.00965
c. 0.0097
d. 0.009651
e. 0.0096509
7. Consider the following list of substances and classify each of them as an element (E), a compound (C), a homogeneous mixture (HM), or a heterogeneous mixture (HTM): Apple juice, Chocolate Sundae, Baking Soda (Sodium hydrogen carbonate), Sulfur, Clean Air.
a. C, HM, C, E, HTM
b. HM, HM, C, E, HTM
c. HM, HTM, C, E, HM
d. HM, HTM, C, E, HTM
e. C, HTM, C, E, HM
8. Classify the following three processes as physical or chemical changes: flammability of propane gas, volatility of liquid propane, compression of gaseous propane into a liquid.
a. Physical, Chemical, Physical
b. Chemical, Physical, Chemical
c. Chemical, Chemical, Physical
d. Chemical, Physical, Physical
e. Physical, Physical, Chemical
9. An energy bill indicates that the customer used 955 kWh in November. How many joules did the customer use? $\left[1 \mathrm{kWh}=3.60 \times 10^{6} \mathrm{~J}\right]$
a. 3.44×10^{9}
b. 3.44×10^{-9}
c. 3.44×10^{3}
d. 3.44×10^{-3}
e. 2.65×10^{8}
10. What is the temperature change in 500 mL of water when it absorbs 25 kJ of heat? [Specific heat capacity of water $=4.18 \mathrm{~J} / \mathrm{g}^{\circ}{ }^{\circ} \mathrm{C}$; Density of water $\left.=1.0 \mathrm{~g} / \mathrm{cc}.\right]$
a. $11^{\circ} \mathrm{C}$
b. $12^{\circ} \mathrm{C}$
c. $210^{\circ} \mathrm{C}$
d. $4.8^{\circ} \mathrm{C}$
e. $0.21^{\circ} \mathrm{C}$
11. In iceboxes, ice is used to cool drinks. This is accomplished because ice melts, absorbing heat from the drink. When ice melts, it absorbs 0.33 kJ per gram. How much ice is required to cool a $12.0-\mathrm{oz}$ drink from $75^{\circ} \mathrm{F}$ to $35^{\circ} \mathrm{F}$, if the heat capacity of the drink is $4.18 \mathrm{~J} / \mathrm{g}^{-}{ }^{\circ} \mathrm{C}$? (Assume that heat transfer is 100% efficient; $1 \mathrm{oz}=28.35 \mathrm{~g}$)
a. 1.97 g
b. 0.84 g
c. $671 . g$
d. 18.7 kg
e. 19.2 g
12. Acetic acid or vinegar, $\mathrm{CH}_{3} \mathrm{COOH}$, is synthesized by the reaction of methanol and carbon monoxide.

$$
\mathrm{CH}_{3} \mathrm{OH}_{(l)}+\mathrm{CO}_{(g)} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(l)} ; \quad \Delta H_{r x n}=-355.9 \mathrm{~kJ} / \mathrm{mol} \mathrm{CH}_{3} \mathrm{COOH} .
$$

Is this reaction endothermic or exothermic? If the density of the acid is $1.044 \mathrm{~g} / \mathrm{mL}$, what is the quantity of heat involved in the synthesis of 1.00 L of acetic acid?
a. Endothermic, +6.19 MJ
b. Exothermic, - 6.19 MJ
c. Endothermic, +22.29 kJ
d. Exothermic, -22.29 kJ
e. Endothermic, +6.19 J
13. Gallium has two naturally occurring isotopes: Ga-69 with mass 68.9256 amu and a natural abundance of 60.11% and $\mathrm{Ga}-71$ with mass 70.9247 amu . Calculate the atomic mass of gallium in $a m u$.
a. $\quad 69.72$
b. 70.13
c. 84.06
d. 55.79
e. 72.03
14. How many electrons are present in ${ }_{33} \mathrm{As}^{3-}$ ion?
a. 33
b. 30
c. 36
d. 39
e. 27
15. Rutherford's experiments used a certain kind of particles on gold foil. What were they?
a. Beta-particles
b. Gamma-particles
c. Delta-particles
d. Alpha-particles
e. Eta-particles
16. The compound nickel(II) bromate has the formula:
a. $\mathrm{Ni}\left(\mathrm{BrO}_{2}\right)_{2}$
b. $\mathrm{Ni}\left(\mathrm{BrO}_{3}\right)_{2}$
c. NiBrO_{2}
d. NiBrO_{3}
e. $\mathrm{Ni}_{2} \mathrm{BrO}_{3}$
17. The compound $\mathrm{Pb}\left(\mathrm{SO}_{4}\right)_{2}$ is named:
a. Lead(II) sulfide
b. Lead(II) sulfate
c. Lead(IV) sulfate
d. Lead(IV) sulfite
e. Lead(II) sulfite
18. The compound $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ is named:
a. Ammonia chromate
b. Ammonia dichromate
c. Ammonium dichromate
d. Diammonium chromate
e. Ammonium chromate
19. The compound SF_{6} is named:
a. Sulfur hexafluoride
b. Sulfur pentafluoride
c. Sulfur tetrafluoride
d. Sulfur fluoride
e. Sulfide pentafluorine
20. The compound dinitrogen trioxide has the formula:
a. NO_{2}
b. $\mathrm{N}_{2} \mathrm{O}_{6}$
c. $\mathrm{N}_{2} \mathrm{O}_{3}$
d. $\mathrm{N}_{3} \mathrm{O}_{2}$
e. $\mathrm{N}_{3} \mathrm{O}_{6}$
21. The compound phosphoric acid has the formula:
a. $\mathrm{H}_{2} \mathrm{PO}_{4}$
b. $\mathrm{H}_{2} \mathrm{PO}_{3}$
c. $\mathrm{H}_{3} \mathrm{PO}_{3}$
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$
e. $\mathrm{H}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
22. The compound $\mathrm{H}_{2} \mathrm{SO}_{3}$ has the name:
a. Hydrosulfuric acid
b. Sulfuric acid
c. Sulfurous acid
d. Hydrosulfurous acid
e. Hydrogen sulfite acid
23. What is the sum of the coefficients of the following equation?
$\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}+_{-} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}+{ }_{-} \mathrm{NaNO}_{3(a q)}$.
a. 9
b. 10
c. 12
d. 14
e. 16
24. The coefficients of the following equation, a, b, and c have the value:
$\underline{a} \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \underline{b} \mathrm{~N}_{2} \mathrm{O}+\underset{\boldsymbol{c}}{\boldsymbol{c}} \mathrm{H}_{2} \mathrm{O}$
a. $1,2,2$
b. $1,1,2$
c. $2,1,2$
d. $2,1,1$
e. $1,1,1$
25. The sum of the coefficients of the following equation, a, b, c, and d have the value:
$\underline{a} \mathrm{NH}_{3(g)}+\underline{b}_{2(g)} \rightarrow \underline{c} \mathrm{NO}_{(g)}+\underline{d} \mathrm{H}_{2} \mathrm{O}_{(g)}$
a. $4,5,5,6$
b. $4,5,4,6$
c. $4,4,4,6$
d. $6,5,6,9$
e. $6,5,6,8$
26. The sum of the coefficients of the following reaction is:

a. 15
b. 13
c. 14
d. 12
e. 16
27. Acidified water (due to acid rain, primarily nitric acid) is neutralized by a process called liming, which is the addition of limestone (calcium carbonate) to water. The sum of the coefficients of the balanced molecular equation of this reaction is:
a. 6
b. 5
c. 4
d. 7
e. 8
28. Combustion of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ in air $\left(\mathrm{O}_{2}\right)$ results in the formation of carbon dioxide and water. The sum of the coefficients of the balanced chemical equation depicting this reaction is:
a. 33
b. 45
c. 31
d. 35
e. 47
29. What are the products when aqueous solutions containing 2 moles of hydroiodic acid and 1 mole of barium hydroxide are mixed with each other?
a. 1 mole of water and 1 mole of aqueous BaI
b. 1 mole of water and 1 mole of solid BaI_{2}
c. 2 moles of water and 1 mole of aqueous BaI_{2}
d. 1 mole of water and 1 mole of aqueous BaI_{2}
e. 2 moles of water and 1 mole of solid BaI
30. What is the balanced net ionic equation when aqueous solutions of sodium phosphate and copper(II) chloride are mixed?
a. $\mathrm{Cu}^{2+}{ }_{(a q)}+\mathrm{PO}_{4}{ }_{(a q)}^{2-} \rightarrow \mathrm{CuPO}_{4(s)}$
b. $2 \mathrm{Cu}^{+}{ }_{(a q)}+\mathrm{PO}_{3}^{2-}{ }_{(a q)} \rightarrow 2(\mathrm{Cu}) \mathrm{PO}_{3(s)}$
c. $\mathbf{3 C u}{ }^{2+}{ }_{(a q)}+2 \mathrm{PO}_{4}{ }^{3-}{ }_{(a q)} \rightarrow 3(\mathrm{Cu}) 2\left(\mathrm{PO}_{4}\right)_{(s)}$
d. $\mathbf{2 C u}{ }^{2+}{ }_{(a q)}+\mathbf{3 P O}_{4}{ }^{3-}{ }_{(a q)} \rightarrow \mathrm{Cu}_{2}\left(\mathrm{PO}_{4}\right)_{3(s)}$
e. $\mathbf{3 C u}^{2+}{ }_{(a q)}+\mathbf{2 P O} \mathbf{O}^{3-}{ }_{(a q)} \rightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}$
31. What is the balanced net ionic equation when aqueous hydrobromic acid is mixed with potassium hydrogen sulfite?
a. $\mathrm{H}_{(a q)}^{+}+\mathrm{HSO}_{3}^{-}{ }_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(l)}$
b. $\mathrm{H}_{(a q)}^{+}+\mathrm{HSO}_{3}^{-}(a q) \rightarrow \mathrm{H}_{2(g)}+\mathrm{SO}_{3(g)}$
c. $\mathrm{H}^{+}{ }_{(a q)}+\mathrm{HSO}_{4}^{-}{ }_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{SO}_{3(g)}$
d. $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{HSO}_{4}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{SO}_{3(g)}$
e. $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{HSO}_{\mathbf{3}_{(a q)}^{-}} \rightarrow \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } _ { (l) }}+\mathbf{S O}_{2(g)}$
32. Consider the reaction:

$$
2 K_{(s)}+B r_{2(l)} \rightarrow 2 K B r_{(s)}
$$

Which of the species is oxidized, and which is reduced? Answers are shown as (oxidized species, reduced species).
a. $\mathrm{K}, \mathrm{Br}_{2}$
b. $\mathrm{KBr}, \mathrm{Br}_{2}$
c. K, KBr
d. KBr, K
e. $\mathrm{Br}_{2}, \mathrm{~K}$
33. Classify the following reaction:
$\mathrm{Ca}(\mathrm{s})+2 \mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})$
a. Precipitation
b. Acid-base
c. Redox
d. Decarbonation
e. Fulmination
34. A solution contains one or more of the following ions: $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}$, and Cu^{2+}. When sodium chloride is added to the solution, no precipitate occurs. When sodium sulfate is added to the solution, a white precipitate occurs. The precipitate is filtered off and sodium carbonate is added to the remaining solution, producing a precipitate. Which ions were present in the original solution?
a. Ag^{+}and Ca^{2+}
b. Ca^{2+} and Cu^{2+}
c. Ag^{+}and Cu^{2+}
d. All three of them
e. None of them
35. How many moles of O are present in 5.00 g of $\operatorname{tin}(\mathrm{IV})$ oxide?
a. 0.066
b. 0.033
c. 0.074
d. 0.037
e. 0.017
36. How many g of Cl are present in 4.35 mol of $\mathrm{Ca}\left(\mathrm{ClO}_{2}\right)_{2}$?
a. 154.
b. 1.76
c. 308 .
d. 42.9
e. 2.27
37. A laboratory analysis of vanillin, the flavoring agent of vanilla, determined the following mass percent composition of: $63.15 \% \mathrm{C}, 5.30 \% \mathrm{H}$, and the rest O . If the molar mass of vanillin is $152.16 \mathrm{~g} / \mathrm{mol}$, the molecular formula for vanillin is:
a. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$
b. $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4}$
c. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{5}$
d. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$
e. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
38. How many atoms does 7.8 g of W contain?
a. 2.6×10^{23}
b. 2.4×10^{25}
c. 7.0×10^{20}
d. 1.6×10^{22}
e. 2.4×10^{23}
39. A mothball, composed of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$, has a mass of 1.32 g . How many atoms of H does it contain?
a. 4.96×10^{22}
b. 6.20×10^{21}
c. $\quad 1.61 \times 10^{24}$
d. 5.85×10^{25}
e. 6.20×10^{22}
40. Iron is found in earth's crust as the ore siderite (iron(II) carbonate). What is the mass in kilograms of the amount of siderite that contains $1.0 \times 10^{3} \mathrm{~kg}$ of iron?
a. 960
b. 2100
c. 480
d. 6500
e. 1000

The following five questions concern the synthesis of ammonia:
Ammonia is synthesized in a gas-phase process involving the reaction of nitrogen monoxide with hydrogen gas. The reaction also releases water vapor as a by-product.
41. What is the sum of the coefficients of the balanced chemical equation representing the process?
a. 9
b. 10
c. 11
d. 12
e. 13
42. How many moles of ammonia can be synthesized from 6.0 mol of hydrogen gas?
a. 2.0
b. 2.4
c. 1.7
d. 15.0
e. 4.0
43. How many grams of ammonia can be synthesized from 15.0 g of nitrogen monoxide?
a. 26.4
b. 2.6
c. $\quad 136.4$
d. 13.6
e. 8.5
44. If $45.8 g$ of nitrogen monoxide and $12.4 g$ of hydrogen are mixed together, which is the limiting reactant, and what is the theoretical yield of ammonia in grams?
a. Hydrogen, 26.0
b. Nitrogen monoxide, 26.0
c. Hydrogen, 41.8
d. Nitrogen monoxide, 41.8
e. None of the above
45. If the actual yield of ammonia is 19.0 g , what is the percentage yield (in \%)?
a. $\quad 160.8$
b. 45.5
c. 136.8
d. 73.1
e. 63.4

Questions 46 and 47 are related to each other.
46. For mines, if the oxygen supply becomes limited or if the air becomes toxic, a worker can use an emergency breathing apparatus to breathe while exiting the mine. The reaction involves potassium superoxide $\left(\mathrm{KO}_{2}\right)$, and produces O_{2}, and absorbs CO_{2}, a product of respiration.

$$
4 \mathrm{KO}_{2(s)}+2 \mathrm{CO}_{2(g)} \rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3(s)}+3 \mathrm{O}_{2(g)}
$$

What minimum amount (in grams) of KO_{2} is required for the apparatus to produce enough oxygen to allow the user to breath for 15 minutes? Assume approximately 5.00 mg of oxygen per second of normal breathing?
a. 0.22
b. 1.52
c. 2.03
d. 3.04
e. 13.3
47. How much potassium carbonate (in grams) is accumulated in the filter at the end of 15 minutes?
a. $\quad 19.0$
b. 3.09
c. 13.0
d. 4.12
e. 26.8
48. The Lewis structure of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$ is:
a.

d. a and c
b.

c

49. Which of the following Lewis structures are acceptable?
a.

b. ${ }^{*} \mathrm{~N} \equiv \mathrm{~N}-{ }_{*}^{*}{ }_{*}^{*}$
c. $: \mathrm{O}=\mathrm{C}=\mathrm{O}=$
50. What is the molecular geometry (shape) of $\mathrm{N}_{2} \mathrm{O}$?
a. Trigonal Planar
b. Bent
c. Linear
d. Tetrahedral
e. Trigonal Pyramidal
51. Which of the molecules are non-polar? I) $\mathrm{H}_{2} \mathrm{O} \quad$ II) $\mathrm{NH}_{2} \mathrm{OH}$ III) CCl_{4}
a. I only
b. II only
c. III only
d. I and II only
e. All of them are polar
52. The shape of the molecule, $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$., around each central atom is given by:
a. Tetrahedral, tetrahedral, tetrahedral
b. Bent, tetrahedral, bent
c. Trigonal Planar, bent, Trigonal planar
d. Tetrahedral, bent, tetrahedral
e. Bent, bent, bent
53. The Lewis structure of NaHCO_{3} is given by:
a.

b.

c.

d.

e.

54. Aluminum metal reacts with oxygen gas to form aluminum oxide. How many moles of aluminum oxide can be produced from $5.00 \mathrm{~mol}_{\mathrm{O}}^{2}$?
a. $\quad 10.0$
b. 7.50
c. 3.33
d. 1.67
e. None of the above
55. The formula for aluminum oxide is:
a. AlO
b. AlO_{2}
c. $\mathrm{Al}_{2} \mathrm{O}$
d. AlO_{3}
e. $\mathrm{Al}_{2} \mathrm{O}_{3}$
56. What is the symbol of the metal potassium?
a. P
b. Os
c. K
d. Pt
e. As
57. What is the formula of methane?
a. CO_{3}
b. CH_{2}
c. CH_{3}
d. CH_{4}
e. None of the above
58. Which of the following statements are inconsistent with Dalton's atomic theory?
a. All carbon atoms are identical.
b. An oxygen atom combines with 1.5 hydrogen atoms to form a water molecule.
c. Two oxygen atoms combine with a carbon atom to form a carbon dioxide molecule.
d. Carbon and nitrogen have different sizes.
e. Helium can be split into two hydrogen atoms.
59. How many grams of N and O are present in 4.55 g of dinitrogen monoxide?
a. $1.65,2.90$
b. $1.52,3.03$
c. $3.03,1.52$
d. $2.90,1.65$
e. None of the above
60. What are the name and formula of the compound formed between indium and nitrate ion?
a. Indium nitrate, $\mathrm{In}\left(\mathrm{NO}_{3}\right)$
b. Indium(III) nitrate, $\mathrm{In}_{3}\left(\mathrm{NO}_{3}\right)$
c. Indium nitrate, $\operatorname{In}\left(\mathrm{NO}_{3}\right)_{2}$
d. Indium(III) nitrate, $\operatorname{In}\left(\mathrm{NO}_{3}\right)_{3}$
e. None of the above

Periodic Table of the Elements

$\underset{1}{1.0079} \underset{\substack{1 \\ \mathbf{1}}}{ }$	IIA	Planck's Constant, $\mathrm{h}=6.626069 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ Avogadro's Number $=\mathbf{6 . 0 2 2 1 4 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ particles $/ \mathbf{m o l}$										IIIA	IVA	VA	VIA	VII	$\underset{4.002602}{\stackrel{2}{\mathrm{He}}}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \mathrm{Be} \\ 9.012182 \end{array}$											$\begin{aligned} & \hline 5 \\ & \mathrm{~B} \end{aligned}$	${\underset{12}{6}}_{\mathbf{C}}^{\mathbf{C}}$	$\underset{\text { 14.0067 }}{\mathbf{N}}$	$\begin{array}{\|c\|} \hline 8 \\ \mathbf{O} \\ \hline 159994 \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ \mathbf{F} \\ \hline 1898403 \end{array}$	$\begin{gathered} \hline 10 \\ \mathbf{N e} \\ 20.180 \\ \hline \end{gathered}$
$\begin{array}{\|c\|} \hline 11 \\ \mathbf{N a} \end{array}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$		IVB	VB	VIB	VIIB		VIIIB	\checkmark	IB	IIB		$\underset{28.855}{14} \underset{\substack{14 \\ \hline}}{2}$	15 \mathbf{P} 30.973762	$\begin{gathered} 16 \\ \underset{32.06}{\mathbf{S}} \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{CI} \end{aligned}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39094 \end{gathered}$
$\begin{array}{\|c\|} \hline 19 \\ \mathbf{K} \\ \mathbf{K 9} .0983 \end{array}$	$\begin{aligned} & 20 \\ & \text { Ca } \\ & \text { 40.08 } \end{aligned}$	$\begin{array}{\|c\|} \hline 21 \\ \text { Sc } \\ \hline 4.9591 \end{array}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.867 \end{gathered}$	$\underset{\text { s0.9415 }}{23}$	$\begin{aligned} & 24 \\ & \mathbf{C r}_{51.96} \end{aligned}$	$\begin{array}{\|c\|} \hline 25 \\ \begin{array}{c} \text { Mn } \\ \text { s4.938 } \end{array} \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$			$\underset{6 \cdot 3.546}{29}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & 65.38 \end{aligned}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$ 7492160	$\begin{aligned} & 34 \\ & \text { Se } \end{aligned}$ 78.96	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$
$\begin{array}{\|c} 37 \\ \text { Rb } \\ 85.4678 \end{array}$	$\begin{aligned} & \hline 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} \hline 39 \\ \mathbf{Y} \\ \mathbf{Y 8} 9.9585 \end{gathered}$	$\begin{aligned} & 40 \\ & \text { Zr } \\ & \text { Zr } 1.224 \end{aligned}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \\ \mathbf{9 2} 290688 \end{array}$	$\begin{gathered} 42 \\ \text { Mo } \\ 0906 \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{array}{\|c\|} \hline 45 \\ \mathbf{R H}_{1229550} \end{array}$	$\begin{aligned} & 46 \\ & \text { Pd } \\ & \text { i06.42 } \end{aligned}$	$\begin{array}{\|c} \hline 47 \\ \text { Ag } \\ \hline 107.862 \end{array}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 49 \\ \text { In } \\ \text { In } 4.818 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & \text { Sn } \\ & \hline 1871 \end{aligned}$	$\begin{aligned} & \hline 51 \\ & \text { Sb } \end{aligned}$	$\begin{aligned} & 52 \\ & \text { Te } \\ & \text { T27.60 } \end{aligned}$	$\begin{gathered} \hline 53 \\ \mathbf{I} \\ 126.9047 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
$\begin{array}{\|c} 55 \\ \text { Cs } \\ 132.904522 \end{array}$	$\begin{aligned} & \hline 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & 72 \\ & \text { Hf } \\ & \hline 18.49 \end{aligned}$	73 Ta 180.9488	$\underset{188.84}{\mathbf{W}_{14}}$	$\begin{gathered} 75 \\ \underset{18}{186207} \\ \hline 1 \end{gathered}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{array}{\|c\|} \hline 77 \\ \mathbf{~ I r ~} \\ 192.217 \end{array}$	$\begin{aligned} & \hline 78 \\ & \mathrm{Pt} \end{aligned}$		$\begin{gathered} 80 \\ \mathrm{Hg} \end{gathered}$	$\left.\begin{array}{\|c\|c\|} \hline 81 \\ \text { TI } \\ \hline 20.383 \end{array} \right\rvert\,$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \end{aligned}$	83 $\mathbf{B i}$ 208.9840	$\begin{aligned} & 84 \\ & \text { Po } \\ & \text { (209) } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	86 $\mathbf{R n}$ $\mathbf{R} \mathbf{(2 2)}$
87 Fr (22)	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$	$\begin{gathered} 89 \\ \mathbf{A c}^{\dagger} \end{gathered}$	104 Rf (265)	105 Db (268)	106 Sg (22)	107 Bh (273)	108 Hs (27)	109 Mt (279	110 Ds (281)	111 $\mathbf{R g}$ (27)	$\begin{aligned} & 112 \\ & \mathrm{Cn} \end{aligned}$	113 (287)	114	115	116 (222)		118

*	$\begin{gathered} 58 \\ \mathrm{Ce} \\ \\ \hline 140.116 \end{gathered}$	$\begin{array}{\|c} 59 \\ \text { Pr } \\ 140.90765 \end{array}$	60 Nd 144.242	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	Sm 150.36	63 Eu 151.964	64 Gd 157.25	$\begin{array}{\|c} \hline 65 \\ \text { Tb } \\ 158.92535 \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.500 \\ \hline \end{gathered}$	67 Ho 164.93032	68 Er 167.259	$\begin{gathered} 69 \\ \operatorname{Tm}_{168.9321} \end{gathered}$	$\begin{aligned} & 7 \\ & \text { Yb } \\ & \text { Ybi.05 } \end{aligned}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.968 \end{gathered}$
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
\dagger	${ }_{232.03806}$	$\underset{231.03588}{\mathbf{P a}}$	$\underset{238.02891}{\mathbf{U}}$	Np (237)	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (261	$\underset{(264}{\operatorname{Lr}}$

Chemistry Practice Placement Exam Answers

Choose the best possible answer for each question. This is not the placement exam, but it gives you an idea of the kind of questions one can expect in the exam.

1. Expressed in μL, the volume $6.35 \times 10^{-4} L$ is:
a. 63.5
b. 6.35
c. 635 .
d. 0.635
e. 0.00635
2. Expressed in scientific notation, the number 1234567890 is:
a. $\quad 1.234567890 \times 10^{9}$
b. $1.234567890 \times 10^{8}$
c. $1.234567890 \times 10^{10}$
d. 1.23456789×10^{9}
e. 1.23456789×10^{8}
3. Expressed in mm^{3}, the volume $4.23 \times 10^{-9} \mathrm{~m}^{3}$ is:
a. 4.23
b. 42.3
c. 423 .
d. 0.423
e. 0.0423
4. If the density of a substance is $1.43 \mathrm{lb} / \mathrm{ft}^{3}$, the mass of $4.35 \mathrm{in}^{3}$ of the substance in grams is: $[1 \mathrm{ft}=12 \mathrm{in} ; 1 \mathrm{lb}=453.59 \mathrm{~g}]$
a. 235.13
b. 12.43
c. 23.70
d. 1.63
e. 1.25
5. Simplified, the expression $\left(8.9 \times 10^{5} \div 2.348 \times 10^{2}\right)+121$ is:
a. 3911.46
b. 3900
c. 3910
d. 3911
e. 3911.5
6. Rounded to four significant figures, the number 0.009650901 becomes:
a. 0.009650
b. 0.00965
c. 0.0097
d. 0.009651
e. 0.0096509
7. Consider the following list of substances and classify each of them as an element (E), a compound (C), a homogeneous mixture (HM), or a heterogeneous mixture (HTM): Apple juice, Chocolate Sundae, Baking Soda (Sodium hydrogen carbonate), Sulfur, Clean Air.
a. C, HM, C, E, HTM
b. HM, HM, C, E, HTM
c. HM, HTM, C, E, HM
d. HM, HTM, C, E, HTM
e. C, HTM, C, E, HM
8. Classify the following three processes as physical or chemical changes: flammability of propane gas, volatility of liquid propane, compression of gaseous propane into a liquid.
a. Physical, Chemical, Physical
b. Chemical, Physical, Chemical
c. Chemical, Chemical, Physical
d. Chemical, Physical, Physical
e. Physical, Physical, Chemical
9. An energy bill indicates that the customer used 955 kWh in November. How many joules did the customer use? [$1 \mathrm{kWh}=3.60 \times 10^{6} \mathrm{~J}$]
a. 3.44×10^{9}
b. 3.44×10^{-9}
c. 3.44×10^{3}
d. 3.44×10^{-3}
e. 2.65×10^{8}
10. What is the temperature change in 500 mL of water when it absorbs 25 kJ of heat? [Specific heat capacity of water $=4.18 \mathrm{~J} / \mathrm{g}-{ }^{\circ} \mathrm{C}$; Density of water $\left.=1.0 \mathrm{~g} / \mathrm{cc}.\right]$
a. $11^{\circ} \mathrm{C}$
b. $12^{\circ} \mathrm{C}$
c. $210^{\circ} \mathrm{C}$
d. $4.8^{\circ} \mathrm{C}$
e. $0.21^{\circ} \mathrm{C}$
11. In iceboxes, ice is used to cool drinks. This is accomplished because ice melts, absorbing heat from the drink. When ice melts, it absorbs 0.330 kJ per gram. How much ice is required to cool a $12.0-\mathrm{oz}$ drink from $75.0^{\circ} \mathrm{F}$ to $35.0^{\circ} \mathrm{F}$, if the heat capacity of the drink is $4.18 \mathrm{~J} / \mathrm{g}_{-}{ }^{\circ} \mathrm{C}$? (Assume that heat transfer is 100% efficient; $1 \mathrm{oz}=28.35 \mathrm{~g}$)
a. 1.97 g
b. 95.8 g
c. $671 . g$
d. 310. g
e. $19.2 g$
12. Acetic acid or vinegar, $\mathrm{CH}_{3} \mathrm{COOH}$, is synthesized by the reaction of methanol and carbon monoxide.
$\mathrm{CH}_{3} \mathrm{OH}_{(l)}+\mathrm{CO}_{(g)} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(l)} ; \quad \Delta H_{r x n}=-355.9 \mathrm{~kJ} / \mathrm{mol} \mathrm{CH}_{3} \mathrm{COOH}$.
Is this reaction endothermic or exothermic? If the density of the acid is $1.044 \mathrm{~g} / \mathrm{mL}$, what is the quantity of heat involved in the synthesis of $1.00 L$ of acetic acid?
a. Endothermic, +6.19 MJ
b. Exothermic, -6.19 MJ
c. Endothermic, +22.29 kJ
d. Exothermic, -22.29 kJ
e. Endothermic, +6.19 J
13. Gallium has two naturally occurring isotopes: Ga-69 with mass 68.9256 amu and a natural abundance of 60.11% and $\mathrm{Ga}-71$ with mass 70.9247 amu . Calculate the atomic mass of gallium in $a m u$.
a. 69.72
b. 70.13
c. 84.06
d. 55.79
e. 72.03
14. How many electrons are present in ${ }_{33} \mathrm{As}^{3-}$ ion?
a. 33
b. 30
c. 36
d. 39
e. 27
15. Rutherford's experiments used a certain kind of particles on gold foil. What were they?
a. Beta-particles
b. Gamma-particles
c. Delta-particles
d. Alpha-particles
e. Eta-particles
16. The compound nickel(II) bromate has the formula:
a. $\mathrm{Ni}\left(\mathrm{BrO}_{2}\right)_{2}$
b. $\mathrm{Ni}\left(\mathrm{BrO}_{3}\right)_{2}$
c. NiBrO_{2}
d. NiBrO_{3}
e. $\mathrm{Ni}_{2} \mathrm{BrO}_{3}$
17. The compound $\mathrm{Pb}\left(\mathrm{SO}_{4}\right)_{2}$ is named:
a. Lead(II) sulfide
b. Lead(II) sulfate
c. Lead(IV) sulfate
d. Lead(IV) sulfite
e. Lead(II) sulfite
18. The compound $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ is named:
a. Ammonia chromate
b. Ammonia dichromate
c. Ammonium dichromate
d. Diammonium chromate
e. Ammonium chromate
19. The compound SF_{6} is named:
a. Sulfur hexafluoride
b. Sulfur pentafluoride
c. Sulfur tetrafluoride
d. Sulfur fluoride
e. Sulfide pentafluorine
20. The compound dinitrogen trioxide has the formula:
a. NO_{2}
b. $\mathrm{N}_{2} \mathrm{O}_{6}$
c. $\mathrm{N}_{2} \mathrm{O}_{3}$
d. $\mathrm{N}_{3} \mathrm{O}_{2}$
e. $\mathrm{N}_{3} \mathrm{O}_{6}$
21. The compound phosphoric acid has the formula:
a. $\mathrm{H}_{2} \mathrm{PO}_{4}$
b. $\mathrm{H}_{2} \mathrm{PO}_{3}$
c. $\mathrm{H}_{3} \mathrm{PO}_{3}$
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$
e. $\mathrm{H}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
22. The compound $\mathrm{H}_{2} \mathrm{SO}_{3}$ has the name:
a. Hydrosulfuric acid
b. Sulfuric acid
c. Sulfurous acid
d. Hydrosulfurous acid
e. Hydrogen sulfite acid
23. What is the sum of the coefficients of the following equation?
$\mathrm{Na}_{3} \mathrm{PO}_{4(a q)}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}+\mathrm{NaNO}_{3(a q)}$.
a. 9
b. 10
c. 12
d. 14
e. 16
24. The coefficients of the following equation, a, b, and c have the value:
$\underline{a} \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \underline{b} \mathrm{~N}_{2} \mathrm{O}+\underset{\boldsymbol{c}}{\boldsymbol{c}} \mathrm{H}_{2} \mathrm{O}$
a. $1,2,2$
b. $1,1,2$
c. $2,1,2$
d. $2,1,1$
e. $1,1,1$
25. The sum of the coefficients of the following equation, a, b, c, and d have the value:
$\underline{a} \mathrm{NH}_{3(g)}+\underline{b} \mathrm{O}_{2(g)} \rightarrow \underline{c} \mathrm{NO}_{(g)}+\underline{d} \mathrm{H}_{2} \mathrm{O}_{(g)}$
a. $4,5,5,6$
b. $4,5,4,6$
c. $4,4,4,6$
d. $6,5,6,9$
e. $6,5,6,8$
26. The sum of the coefficients of the following reaction is:

a. 15
b. 13
c. 14
d. 12
e. 16
27. Acidified water (due to acid rain, primarily nitric acid) is neutralized by a process called liming, which is the addition of limestone (calcium carbonate) to water. The sum of the coefficients of the balanced molecular equation of this reaction is:
a. 6
b. 5
c. 4
d. 7
e. 8
28. Combustion of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ in air $\left(\mathrm{O}_{2}\right)$ results in the formation of carbon dioxide and water. The sum of the coefficients of the balanced chemical equation depicting this reaction is:
a. 33
b. 45
c. 31
d. 35
e. 47
29. What are the products when aqueous solutions containing 2 moles of hydroiodic acid and 1 mole of barium hydroxide are mixed with each other?
a. 1 mole of water and 1 mole of aqueous BaI
b. 1 mole of water and 1 mole of solid BaI_{2}
c. 2 moles of water and 1 mole of aqueous BaI_{2}
d. 1 mole of water and 1 mole of aqueous BaI_{2}
e. 2 moles of water and 1 mole of solid BaI
30. What is the balanced net ionic equation when aqueous solutions of sodium phosphate and copper(II) chloride are mixed?
a. $\mathrm{Cu}^{2+}{ }_{(a q)}+\mathrm{PO}_{4}{ }^{2-}{ }_{(a q)} \rightarrow \mathrm{CuPO}_{4(s)}$
b. $2 \mathrm{Cu}^{+}{ }_{(a q)}+\mathrm{PO}_{3}^{2-}{ }_{(a q)} \rightarrow 2(\mathrm{Cu}) \mathrm{PO}_{3(s)}$
c. $\mathbf{3 C u}{ }^{2+}{ }_{(a q)}+2 \mathrm{PO}_{4}{ }^{3-}{ }_{(a q)} \rightarrow \mathbf{3 (C u)} \mathbf{2}\left(\mathrm{PO}_{4}\right)_{(s)}$
d. $\quad \mathbf{2 C u}{ }^{2+}{ }_{(a q)}+\mathbf{3 P O}_{4}^{3-}{ }_{(a q)} \rightarrow \mathrm{Cu}_{2}\left(\mathrm{PO}_{4}\right)_{3(s)}$
e. $\mathbf{3 C u}^{2+}{ }_{(a q)}+\mathbf{2 P O}{ }_{4}^{3-}{ }_{(a q)} \rightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}$
31. What is the balanced net ionic equation when aqueous hydrobromic acid is mixed with potassium hydrogen sulfite?
a. $\mathrm{H}_{(a q)}^{+}+\mathrm{HSO}_{3}^{-}{ }_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3(l)}$
b. $\mathrm{H}_{(a q)}^{+}+\mathrm{HSO}_{3}^{-}{ }_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{SO}_{3(g)}$
c. $\mathrm{H}^{+}{ }_{(a q)}+\mathrm{HSO}_{4}^{-}{ }_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{SO}_{3(g)}$
d. $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{HSO}_{4}^{-}{ }_{(a q)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{SO}_{3(g)}$
e. $\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{HSO}_{3}^{-}{ }_{(a q)} \rightarrow \mathbf{2 H}_{2} \mathrm{O}_{(l)}+\mathbf{S O}_{2(g)}$ -
32. Consider the reaction:

$$
2 K_{(s)}+B r_{2(l)} \rightarrow 2 K B r_{(s)}
$$

Which of the species is oxidized, and which is reduced? Answers are shown as (oxidized species, reduced species).
a. $\mathrm{K}, \mathrm{Br}_{2}$
b. $\mathrm{KBr}, \mathrm{Br}_{2}$
c. K, KBr
d. KBr, K
e. $\mathrm{Br}_{2}, \mathrm{~K}$
33. Classify the following reaction:
$\mathrm{Ca}(\mathrm{s})+2 \mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})$
a. Precipitation
b. Acid-base
c. Redox
d. Decarbonation
e. Fulmination
34. A solution contains one or more of the following ions: $\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}$, and Cu^{2+}. When sodium chloride is added to the solution, no precipitate occurs. When sodium sulfate is added to the solution, a white precipitate occurs. The precipitate is filtered off and sodium carbonate is added to the remaining solution, producing a precipitate. Which ions were present in the original solution?
a. Ag^{+}and Ca^{2+}
b. Ca^{2+} and Cu^{2+}
c. Ag^{+}and Cu^{2+}
d. All three of them
e. None of them
35. How many moles of O are present in 5.00 g of $\operatorname{tin}(\mathrm{IV})$ oxide?
a. 0.066
b. 0.033
c. 0.074
d. 0.037
e. 0.017
36. How many g of Cl are present in 4.35 mol of $\mathrm{Ca}\left(\mathrm{ClO}_{2}\right)_{2}$?
a. 154.
b. 1.76
c. 308 .
d. 42.9
e. 2.27
37. A laboratory analysis of vanillin, the flavoring agent of vanilla, determined the following mass percent composition of: $63.15 \% \mathrm{C}, 5.30 \% \mathrm{H}$, and the rest O . If the molar mass of vanillin is $152.16 \mathrm{~g} / \mathrm{mol}$, the molecular formula for vanillin is:
a. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$
b. $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{4}$
c. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{5}$
d. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$
e. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$
38. How many atoms does 7.8 g of W contain?
a. 2.6×10^{23}
b. 2.4×10^{25}
c. 7.0×10^{20}
d. 1.6×10^{22}
e. 2.4×10^{23}
39. A mothball, composed of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$, has a mass of 1.32 g . How many atoms of H does it contain?
a. 4.96×10^{22}
b. 6.20×10^{21}
c. $\quad 1.61 \times 10^{24}$
d. 5.85×10^{25}
e. 6.20×10^{22}
40. Iron is found in earth's crust as the ore siderite (iron(II) carbonate). What is the mass in kilograms of the amount of siderite that contains $1.0 \times 10^{3} \mathrm{~kg}$ of iron?
a. 960
b. 2100
c. 480
d. 6500
e. 1000

The following five questions concern the synthesis of ammonia:
Ammonia is synthesized in a gas-phase process involving the reaction of nitrogen monoxide with hydrogen gas. The reaction also releases water vapor as a by-product.
41. What is the sum of the coefficients of the balanced chemical equation representing the process?
a. 9
b. 10
c. 11
d. 12
e. 13
42. How many moles of ammonia can be synthesized from 6.0 mol of hydrogen gas?
a. 2.0
b. 2.4
c. 1.7
d. 15.0
e. 4.0
43. How many grams of ammonia can be synthesized from 15.0 g of nitrogen monoxide?
a. 26.4
b. 2.64
c. $\quad 136.4$
d. 13.6
e. 8.51
44. If $45.8 g$ of nitrogen monoxide and $12.4 g$ of hydrogen are mixed together, which is the limiting reactant, and what is the theoretical yield of ammonia in grams?
a. Hydrogen, 26.0
b. Nitrogen monoxide, 26.0
c. Hydrogen, 41.8
d. Nitrogen monoxide, 41.8
e. None of the above
45. If the actual yield of ammonia is 19.0 g , what is the percentage yield (in \%)?
a. $\quad 160.8$
b. 45.5
c. 136.8
d. 73.1
e. 63.4

Questions 46 and 47 are related to each other.
46. For mines, if the oxygen supply becomes limited or if the air becomes toxic, a worker can use an emergency breathing apparatus to breathe while exiting the mine. The reaction involves potassium superoxide $\left(\mathrm{KO}_{2}\right)$, and produces O_{2}, and absorbs CO_{2}, a product of respiration.

$$
4 \mathrm{KO}_{2(s)}+2 \mathrm{CO}_{2(g)} \rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3(s)}+3 \mathrm{O}_{2(g)}
$$

What minimum amount (in grams) of KO_{2} is required for the apparatus to produce enough oxygen to allow the user to breath for 15 minutes? Assume approximately 5.00 mg of oxygen per second of normal breathing?
a. 0.22
b. 1.52
c. 2.03
d. 3.04
e. 13.3
47. How much potassium carbonate (in grams) has accumulated at the end of 15 minutes?
a. $\quad 19.0$
b. 3.09
c. 13.0
d. 4.12
e. 26.8
48. The Lewis structure of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$ is:
a.

b.

c.

49. Which of the following Lewis structures are acceptable?
a.

b. $\quad \mathrm{N} \equiv \mathrm{N}-{ }_{*}^{*}{ }_{*}^{*}$
c. $: \mathrm{O}=\mathrm{C}={ }_{*+}=$
50. What is the molecular geometry (shape) of $\mathrm{N}_{2} \mathrm{O}$?
a. Trigonal Planar
b. Bent
c. Linear
d. Tetrahedral
e. Trigonal Pyramidal
51. Which of the molecules are non-polar? I) $\mathrm{H}_{2} \mathrm{O} \quad$ II) $\mathrm{NH}_{2} \mathrm{OH}$ III) CCl_{4}
a. I only
b. II only
c. III only
d. I and II only
e. All of them are polar
52. The shape of the molecule, $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$., around each central atom is given by:
a. Tetrahedral, tetrahedral, tetrahedral
b. Bent, tetrahedral, bent
c. Trigonal Planar, bent, Trigonal planar
d. Tetrahedral, bent, tetrahedral
e. Bent, bent, bent
53. The Lewis structure of NaHCO_{3} is given by:
a.

b.

c.

d.

e.

54. Aluminum metal reacts with oxygen gas to form aluminum oxide. How many moles of aluminum oxide can be produced from $5.00 \mathrm{~mol}_{\mathrm{O}}^{2}$?
a. $\quad 10.0$
b. 7.50
c. 3.33
d. 1.67
e. None of the above
55. The formula for aluminum oxide is:
a. AlO
b. AlO_{2}
c. $\mathrm{Al}_{2} \mathrm{O}$
d. AlO_{3}
e. $\mathrm{Al}_{2} \mathrm{O}_{3}$
56. What is the symbol of the metal potassium?
a. P
b. Os
c. K
d. Pt
e. As
57. What is the formula of methane?
a. CO_{3}
b. CH_{2}
c. CH_{3}
d. CH_{4}
e. None of the above
58. Which of the following statements are inconsistent with Dalton's atomic theory?
a. All carbon atoms are identical.
b. An oxygen atom combines with 1.5 hydrogen atoms to form a water molecule.
c. Two oxygen atoms combine with a carbon atom to form a carbon dioxide molecule.
d. Carbon and nitrogen have different sizes.
e. Helium can be split into two hydrogen atoms.
59. How many grams of N and O are present in 4.55 g of dinitrogen monoxide?
a. $1.65,2.90$
b. $1.52,3.03$
c. $3.03,1.52$
d. $2.90,1.65$
e. None of the above
60. What are the name and formula of the compound formed between indium and nitrate ion?
a. Indium nitrate, $\mathrm{In}\left(\mathrm{NO}_{3}\right)$
b. Indium(III) nitrate, $\mathrm{In}_{3}\left(\mathrm{NO}_{3}\right)$
c. Indium nitrate, $\operatorname{In}\left(\mathrm{NO}_{3}\right)_{2}$
d. Indium(III) nitrate, $\operatorname{In}\left(\mathrm{NO}_{3}\right)_{3}$
e. None of the above

Periodic Table of the Elements

$\underset{1}{1.0079} \underset{\substack{1 \\ \mathbf{1}}}{ }$	IIA	Planck's Constant, $\mathrm{h}=6.626069 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ Avogadro's Number $=\mathbf{6 . 0 2 2 1 4 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ particles $/ \mathbf{m o l}$										IIIA	IVA	VA	VIA	VII	$\underset{4.002602}{\stackrel{2}{\mathrm{He}}}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \mathrm{Be} \\ 9.012182 \end{array}$											$\begin{aligned} & \hline 5 \\ & \mathrm{~B} \end{aligned}$	${\underset{12}{6}}_{\mathbf{C}}^{\mathbf{C}}$	$\underset{\text { 14.0067 }}{\mathbf{N}}$	$\begin{array}{\|c\|} \hline 8 \\ \mathbf{O} \\ \hline 159994 \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ \mathbf{F} \\ \hline 1898403 \end{array}$	$\begin{gathered} \hline 10 \\ \mathbf{N e} \\ 20.180 \\ \hline \end{gathered}$
$\begin{array}{\|c\|} \hline 11 \\ \mathbf{N a} \end{array}$	$\begin{gathered} 12 \\ \mathbf{M g} \end{gathered}$		IVB	VB	VIB	VIIB		VIIIB	\checkmark	IB	IIB		$\underset{28.855}{14} \underset{\substack{14 \\ \hline}}{2}$	15 \mathbf{P} 30.973762	$\begin{gathered} 16 \\ \underset{32.06}{\mathbf{S}} \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{CI} \end{aligned}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39094 \end{gathered}$
$\begin{array}{\|c\|} \hline 19 \\ \mathbf{K} \\ \mathbf{K 9} .0983 \end{array}$	$\begin{aligned} & 20 \\ & \text { Ca } \\ & \text { 40.08 } \end{aligned}$	$\begin{array}{\|c\|} \hline 21 \\ \text { Sc } \\ \hline 4.9591 \end{array}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.867 \end{gathered}$	$\underset{\text { s0.9415 }}{23}$	$\begin{aligned} & 24 \\ & \mathbf{C r}_{51.96} \end{aligned}$	$\begin{array}{\|c\|} \hline 25 \\ \begin{array}{c} \text { Mn } \\ \text { s4.938 } \end{array} \\ \hline \end{array}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$			$\underset{6 \cdot 3.546}{29}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & 65.38 \end{aligned}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \end{aligned}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$ 7492160	$\begin{aligned} & 34 \\ & \text { Se } \end{aligned}$ 78.96	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$
$\begin{array}{\|c} 37 \\ \text { Rb } \\ 85.4678 \end{array}$	$\begin{aligned} & \hline 38 \\ & \mathrm{Sr} \end{aligned}$	$\begin{gathered} \hline 39 \\ \mathbf{Y} \\ \mathbf{Y 8} 9.9585 \end{gathered}$	$\begin{aligned} & 40 \\ & \text { Zr } \\ & \text { Zr } 1.224 \end{aligned}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \\ \mathbf{9 2} 290688 \end{array}$	$\begin{gathered} 42 \\ \text { Mo } \\ 0906 \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{aligned} & 44 \\ & \mathrm{Ru} \end{aligned}$	$\begin{array}{\|c\|} \hline 45 \\ \mathbf{R H}_{1229550} \end{array}$	$\begin{aligned} & 46 \\ & \text { Pd } \\ & \text { i06.42 } \end{aligned}$	$\begin{array}{\|c} \hline 47 \\ \text { Ag } \\ \hline 107.862 \end{array}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 49 \\ \text { In } \\ \text { In } 4.818 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & \text { Sn } \\ & \hline 1871 \end{aligned}$	$\begin{aligned} & \hline 51 \\ & \text { Sb } \end{aligned}$	$\begin{aligned} & 52 \\ & \text { Te } \\ & \text { T27.60 } \end{aligned}$	$\begin{gathered} \hline 53 \\ \mathbf{I} \\ 126.9047 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
$\begin{array}{\|c} 55 \\ \text { Cs } \\ 132.904522 \end{array}$	$\begin{aligned} & \hline 56 \\ & \mathrm{Ba} \end{aligned}$		$\begin{aligned} & 72 \\ & \text { Hf } \\ & \hline 18.49 \end{aligned}$	73 Ta 180.9488	$\underset{188.84}{\mathbf{W}_{14}}$	$\begin{gathered} 75 \\ \underset{18}{186207} \\ \hline 1 \end{gathered}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{array}{\|c\|} \hline 77 \\ \mathbf{~ I r ~} \\ 192.217 \end{array}$	$\begin{aligned} & \hline 78 \\ & \mathrm{Pt} \end{aligned}$		$\begin{gathered} 80 \\ \mathrm{Hg} \end{gathered}$	$\left.\begin{array}{\|c\|c\|} \hline 81 \\ \text { TI } \\ \hline 20.383 \end{array} \right\rvert\,$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \end{aligned}$	83 $\mathbf{B i}$ 208.9840	$\begin{aligned} & 84 \\ & \text { Po } \\ & \text { (209) } \end{aligned}$	$\begin{aligned} & 85 \\ & \text { At } \end{aligned}$	86 $\mathbf{R n}$ $\mathbf{R} \mathbf{(2 2)}$
87 Fr (22)	$\begin{aligned} & 88 \\ & \mathrm{Ra} \end{aligned}$	$\begin{gathered} 89 \\ \mathbf{A c}^{\dagger} \end{gathered}$	104 Rf (265)	105 Db (268)	106 Sg (22)	107 Bh (273)	108 Hs (27)	109 Mt (279	110 Ds (281)	111 $\mathbf{R g}$ (27)	$\begin{aligned} & 112 \\ & \mathrm{Cn} \end{aligned}$	113 (287)	114	115	116 (222)		118

*	$\begin{gathered} 58 \\ \mathrm{Ce} \\ \\ \hline 140.116 \end{gathered}$	$\begin{array}{\|c} 59 \\ \text { Pr } \\ 140.90765 \end{array}$	60 Nd 144.242	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	Sm 150.36	63 Eu 151.964	64 Gd 157.25	$\begin{array}{\|c} \hline 65 \\ \text { Tb } \\ 158.92535 \end{array}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.500 \\ \hline \end{gathered}$	67 Ho 164.93032	68 Er 167.259	$\begin{gathered} 69 \\ \operatorname{Tm}_{168.9321} \end{gathered}$	$\begin{aligned} & 7 \\ & \text { Yb } \\ & \text { Ybi.05 } \end{aligned}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.968 \end{gathered}$
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
\dagger	${ }_{232.03806}$	$\underset{231.03588}{\mathbf{P a}}$	$\underset{238.02891}{\mathbf{U}}$	Np (237)	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (261	$\underset{(264}{\operatorname{Lr}}$

